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Abstract--The dynamics and evaporation of polydisperse collections of liquid drops in an 
axisymmetric, infinite, cylindrical vortex are described using a statistical model. This model describes 
both the dense regime where inter-particle effects are important and the dilute regime. The initial size 
distribution is partitioned into size classes and each initial size-class is followed dynamically and 
thermodynamically using a class-defined, drop-frame coordinate system. Each initial-size-class develops 
a continuum of sizes as drops centrifuge towards hotter surroundings and evaporate. A separate 
coordinate system tracks the gas phase. Because larger drops experience larger centrifugal force, they 
approach the hotter gas faster. However, for appropriate liquid heating times, the large drops might 
evaporate at a faster rate, and so the size-differentiated centrifugation previously observed and 
calculated for cold flow situations does not occur. Instead, a radially peaked drop size distribution 
is developed in the gas vortex. The centrifugal motion forms a drop-free inner vortex core bound by 
a cylindrical shell containing all the drops. This shell of gas and drops is called the drop cluster. 
Numerical calculations show that more parameters control dense clusters than dilute clusters; examples 
of these parametric relations include: (i) the air/liquid mass ratio controls the inner cluster region and 
the gas vortex, whereas drop size distribution controls the outer region; and (ii) polydispersity 
increases the maximum mass fraction of the evaporated compound and enhances penetration of the 
evaporated compound into the surroundings. Except for dilute clusters, the assumption of uniform 
drop number distribution in the cluster is found to be inappropriate. Instead, the drop size distribution 
always becomes non-uniform even if the initial size distribution is monodisperse and the initial drop 
number distribution is uniform. This development of non-uniformity is caused by drops at the cluster 
peripheries preventing heat conduction/convection to drops in the central cluster. Published by Elsevier 
Science Ltd. 
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1. I N T R O D U C T I O N  

Particle-laden flows occur in many important situations: industrially relevant examples include the 
fuel sprays in Diesel engines, turbines, and furnaces while naturally occurring examples include 
tornadoes, dust storms and dust devils. The understanding of the particle-flow and the 
particle-particle interactions in such flows is directly related to control and/or prediction of 
quantities of interest. For example, current unsolved industrial problems are: optimization of gas 
turbine engines for efficiency and low nitric oxide emissions; optimization of Diesel engines for 
efficiency and low soot emissions; furnaces burning fuels having a range of volatilities and 
viscosities while controlling emissions. 

Particle-particle interactions are unimportant if the particles are sufficiently distant from each 
other. 'Sufficient distance' is quantified by the ratio of the average half distance between adjacent 
particle centers, R~, to the average particle radius, R. In previous studies (Bellan and Cuffel 1983), 
the ratio R~/R was called the 'nondimensional radius of the sphere of influence'. For large R~/R, 
particles do not interact (dilute limit), but if R~/R <~ O(10) particle interactions become important 
(dense limit). The Ri/R concept will be extended here to describe polydisperse collections of drops. 

The interaction between particles and flow depends upon both mass loading and R~/R. When 
the mass loading is low and R~/R is large, the flow affects the particles but not vice versa so that 
the dynamic influence of particles may be neglected when studying the flow, and particle 
interactions are not important. This limit has been studied by Crowe et al. (1988, 1993), Chung 
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and Troutt  (1988) Lazaro and Lasheras (1989, 1992a, 1992b), Squires and Eaton (1991), Longmire 
and Eaton (1992), Tambour (1985), Greenberg et al. (1986) and Tambour et al. (1994). Some of 
these studies showed that large scale structures strongly affect particle dispersion and, for Stokes 
number ~ 1, particles accumulate at the structure edge (the 'focussing effect'). Yang and Sichel, 
1989 modeled the interaction of a nonevaporating (nearly saturated), cylindrical droplet cloud with 
a swirling flow of an infinitely large region. The study was performed in the limit of very small 
drop volumetric fraction, constant drop temperature, no drop interactions, velocity of the gas 
within the cloud being much smaller than that of the drops, and initially monosize distribution. 
Seth et al. (1980) and Raju and Sirignano (1987) have also studied sprays in the absence of drop 
interactions. 

This study presents results on polydispersity,  drop dispersion and evaporation combined with 
drop interaction, issues of practical relevance to spray-combustion, medical sprays, spray 
dispensers and spray coating. Drop interaction is modeled from first principles and classes of 
drops defined by constant initial-size are followed in time and space to become polydisperse 
classes. 

This configuration of a drop cluster in an inviscid vortex studied here is relevant to the 
spray edge where heat/mass transfer are important. Clusters of drops are entities observed in 
sprays produced by a variety of atomizers. Large, liquid clusters breaking into ligaments and 
droplets during atomization were observed by Engelbert et al. (1995) during the coaxial 
atomization of water in air. The velocity and diameter of these clusters were measured to be 
respectively 1500cm/s and 0.4cm, but their internal structure has not been determined. 
Akamatsu et al. (1996) have also observed droplet clusters in uniformly 'premixed' droplet 
streams, where premixed defined the condition of minimal slip velocity between drops and gas. 
The conclusion was that the existence of droplet clusters promotes the collective (group) 
burning of particles due to "their eddy motion and preferential flame propagation, hence 
generating temporal and spatial variation in the scale of droplet clusters". From the observed 
p.d.f, of  the characteristic length scale of individual droplet clusters at a radial location of 
1.5 cm and at several axial locations, an average characteristic length scale of droplet clusters 
versus the axial distance was calculated. This scale was shown to evolve from about 4.5 cm 
at a distance of 4.5cm to about 0.3cm at a distance of 13cm. Despite these detailed 
observations, the internal structure of the clusters was not measured. Drop clusters in both 
burning and non-burning sprays were observed in a variety of situations (Allen and Hanson 
1986a, 1986b; Rudoff et al. 1989; Mizutani et al. 1993; Nakabe et al. 1994) including air-assist 
sprays (McDonell et al. 1992, 1993). In burning sprays, flames were observed at the cluster 
periphery, suggesting the importance of drop interaction. Drops in vortices were also observed 
in burning sprays created by airblast atomizers (Hardalupas et al. 1994) and were determined 
to play a major role in the stabilization of the flame. Although individual groups of a small 
number of drops in streams or arrays have been experimentally studied, the structure of 
isolated clusters containing a large number of drops has never been experimentally 
characterized. 

In this paper we adopt a dual point of view whereby: (1) the cluster of drops embedded 
in a vortex represents a physically limited region of a spray according to the above-cited 
observations; and (2) the structure of this limited region, which has not yet been determined 
experimentally, is modeled consistently with the physics of collections of drops in vortical 
flows. Such physical situations occur in sprays (Aftel et al. 1996; Presser et al. 1992, 1993, 
1994; Presser and Semerjian 1988; Gupta et al. 1996; McDonell et al. 1992), although the 
spray conical geometric configuration does not have an exact correspondence to the 
axisymmetric configuration studied here. To ascertain that our model is physically correct, we 
seek experimental observations of our predicted quantities and compare their observed 
variation with our predictions. We consider that if we find similar variations in the 
experiments comparable to predictions, our model is qualitatively validated. Our focus is on 
the dynamics and thermodynamics of the gas and drops. 

This paper is organized as follows: section 2 develops the system of equations, section 3 
describes the method of solution, section 4 discusses initial conditions, section 5 presents 
numerical calculations and their interpretation, and section 6 gives a summary and conclusions. 
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2. PHYSICAL ASSUMPTIONS AND MODEL 

A binary distribution of  initial drop sizes in an isolated 2D axisymmetric infinite cylindrical 
vortex is shown as an example of the considered configuration in figure 1. For  simplicity, all drops 
have identical initial temperature and the initial cluster gas temperature is uniform. The drops are 
much colder than the surrounding gas and have sizes and velocities depending on the radial position 
from the vortex center r and on the time t. The initial size distribution is partitioned into distinct 
size classes identified by the subscript j and each initial-size class is then followed in its own 
coordinate system. Since the drops evaporate while dispersed by the vortex, the drops in an 
initial-size class evolve into a continuum of sizes but remain in their respective initial-size class. 

In the cold flow studies of Crowe et al. (1988, 1993), and Lazaro and Lasheras (1989, 1992a, 
1992b) the drops did not evaporate and so dispersed differentially by size. In contrast, here drops 
do not necessarily disperse differentially by size because of a competing mechanism where larger 
drops, centrifuged further out, encounter hotter gas and might evaporate at a faster rate than 
smaller drops closer to the core. The competition between centrifugation and evaporation rate 
determines the particle size distribution for each class. 

The cluster volume is bounded by surfaces which are the statistical envelopes of  the outermost 
(Re) and innermost (R~,) drops. This physical picture is suggested by the laser sheet beam 
measurements of Presser et al. (1993) for swirling pressure-jet sprays and of Presser et al. (1988) 
for both swirling pressure-jet nozzle and air-assist nozzle sprays which show an annular 
configuration of the horizontal cross section of the spray. Here the gas Reynolds number is defined 
as Re = uGRc/vG where uG is gas velocity, Re is cluster radius, and vG is gas kinematic viscosity; 
typically Re ,-, O004) so that the vortex is inviscid. The drop Reynolds number is defined as 
Redj = usjRj/vG, where usj = udj - uG is the local slip velocity between phases, u~j is the drop velocity 
and Rj is the drop radius. Initially, Redj ~ O(1)-O(10) so that a drag force causes interaction 
between drops and gas. This force results from shape-drag, friction and drop evaporation and for 
the case of  monodisperse drop clusters was found by Bellan and Harstad (1990) to be proportional 
to the drop number density. Bellan and Harstad's monodisperse deterministic model had drops 
uniformly dispersed in the cluster, dependent variables uniform through the cluster and used a 
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Figure 1. Sketch of a binary size configuration and of the coordinate systems. 
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similarity solution for the momentum equations. In contrast, the model presented here is statistical 
in nature and does not contain these simplifying assumptions of the previous model. 

2.1. Conservation equations f o r  the drops 

Drop number  density equat ions .For  each initial-size class j in the Eulerian coordinate system 
defined above, mass conservation is given by 

~n,/St + [~?(rn~ud~)/Or]/r = 0, [1] 

where n~ is the drop number density and u~j is the radial drop velocity including diffusive velocity. 
This equation holds between r,,,j and ro,,j, respectively, the inner and outer radius of distribution 
j .  

M o m e n t u m  equations.  We define the respective drop and gas angular momenta as Fa0j = rjudoj and 
F~o = ru~o (here 0 denotes azimuthal direction) so that the drop equations can be expressed as 

drj /dt  = ud~j [2] 

dUdri/dt = [Uao,]2/rj - vsj[udrj - u~r(ri)] + ATdj + Apa/ [31 

dFa0j/dt = - v~j[Fdoj -- F~0(r~)], [41 

where v~j =- pcAd~CD II usj LI/(2md~) is a rate associated with drag (cf. Bellan and Harstad 1990), Ad is 
the drop transverse area, CD is the drag coefficient [assumed to have the same dependence upon 
Re,, and evaporative blowing parameter as in Bellan and Harstad (1987) and Cliffe and Lever 
(1985)], md~ is the drop mass, and ATdi and A~j are body accelerations discussed below. The drag 
force here accounts for mean interactions among drops, Other force terms present in classical, 
single particle momentum equations (Hidy and Brock 1970; Maxey and Riley 1983) such as for 
example the Basset term, buoyancy term or the added mass term are here negligible. 

Energy  equations. To account for energy conservation within the drops and energy transfer to 
the gas adjacent to the drops, the 'sphere of influence' concept is modified to have a statistical 
significance. In the original definition of this concept [by Bellan and Cuffel (1983) for monodisperse, 
uniformly-distributed drop clusters] a fictitious sphere of influence was defined concentric with each 
drop in a cluster and having a radius R, equal to half the distance between the centers of two 
adjacent drops. Thus, the cluster volume consisted of the ensemble of spheres of influence and the 
interstitial space between them. This definition provided a geometric partition of the cluster volume, 
enabling an accounting of inter-drop interactions with the ratio of R~ to the drop radius providing 
a quantitative measure of the cluster denseness (Harstad and Bellan 1991). 

In the present work, we define Ri statistically using 

47tR3n/3 =- PF,  [5] 

where n = 2/_ r_ ~nj is the average total drop number density, J T  is the total number of initial-size 
classes, and P F  = 0.74 is the packing factor (Bellan and Cuffel 1983). 

With this definition, the class j evaporation rate /ndj can be calculated for each Rj using a 
previously derived model (Bellan and Harstad 1988). As in classical models (e.g. Williams 1965), 
the gas surrounding the drops is assumed quasi-steady with respect to the drops; however, unlike 
classical models, the gas density may be non-uniform. At the drop surface, the nonequilibrium 
process of evaporation is determined by the Langmuir-Knudsen kinetic law (Bellan and Harstad 
1988). Unlike the previous interior drop model, the present model takes into account the effect on 
drop temperature profile of surface shear-induced circulation within the drop (using the 
effective-conduction correction of Abramzon and Sirignano 1989); details of the calculation of this 
profile are given in Harstad and Bellan (1991). Accordingly, the Ranz-Marshall correlation is not 
used and, instead, since Red/~< O(102), the evaporation rate is multiplied by the laminar flow 
Nusselt number expression. 

The j-class average gas temperature in the sphere of influence, TGj, must be known in order to 
calculate heat transfer to the drops and the evaporation rate. In the present model, T6j is related 
to the edge gas temperature, TG~, via a polynomial involving Rj/Ri  (Bellan and Harstad 1988). In 
particular, TG~ = ~T6j, where i refers to the interstitial space between drops, ~j = 1 + 2).~ + 7~.~ and 
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2j = (1 - T~,/TG)R/n ~-~. Here 2/<< 1, TGs: is the drop surface temperature for initial-size classj  and 
Tc is the class-averaged gas temperature at given r. Similarly, pGi = pG/ /~ / ,  where pG is the gas 
density. Averaging using the weights n:/n gives TG~ = < ~j > TG, where 
( ~ / > ~ 1 + 2 ( 2 , ) + 4 ( 2 / > 2 + 3 ( ) , ~ > .  These polynomial expressions result from a detailed 
consideration of averaging processes in the drop region. 

2.2. Gas conservation equations 

Mass conservation 

@G/at + [O(rpGuG~)/Or]/r = - ~ njndj. [6] 
J 

Radial momentum conservation 

pG(t~UGr/Ot + UGr~UGr/ t~r  - -  U2o / r )  dr ~p/Or = FGr, [7] 

where FG~ = -Z/n/(Fdr/+ rhd/u,~) is the radial force on the gas and F~j is the radial force on the 
drops excluding turbulent effects. The expression for FG~ accounts for fluid dynamic gas-drop 
interaction and also for gas evaporated from the drops. 

Azimuthal momentum conservation 

~(pGUGo )/~t + [~(rZpGu~rUGo )/Or]/r 2 = ffGO, [8] 

where 

ffGO = ~, nj(v~jmaju~oj -- indjUdo/) [9] 
J 

is the azimuthal force on the gas and U~oj is the azimuthal component of Us/. 
Species conservation 

ca(pG Yv)/Ot + [O(rpGUGr Yv)/Or]/r = - - ~  njndj + {~[DrpGr~ YF/~r]/~r}/r. 
) 

[10] 

Yv is the gas mass fraction of the evaporating liquid component averaged over drop spheres of 
influence and DT is a turbulent mass diffusivity (modeled below). 

Energy consert'ation 

?(p~hG)/?t + [O(rpGuGrhG)/~r]/r = [~(rk~OTG/~r)/~r]/r 

+ ~ n/[ind/(Ahov,p,,- CpvT~sj- 0.5u 2) + vs/md, u2/], [11] 
/ 

where hc = Cpc TG is the enthalpy, pGh(; = yp/(? -- I), y is the ratio of the heat capacities, Cp is the 
specific heat capacity at constant pressure, kG is the conductivity, and Ahov,p is the heat transferred 
to the drop from the gas per unit mass of evaporated fuel. The third and fourth terms on the right 
hand side of [11] show how incoming fuel vapor changes gas thermal and kinetic energies 
respectively while the last term gives viscous dissipation from drag. 

Equation of  state. The ideal gas law relates the pressure, temperature, density and mass fractions. 
Since the ambient pressure is assumed constant, other pressure contributions are small (see sections 
2.5 and 5.1) and CpG is constant, it is seen that O(pGh~)/Ot ~--O. Thus [11] becomes quasi-steady 
and determines u~r. 

2.3. Discretization 

Each initial-size class has associated Lagrangian radial coordinates r~k)(t), where k identifies the 
discretization of the vortex into annular intervals r~k)< r < r (k+~), . All dependent quantities are 
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averaged over an interval as follows 

f 4~+'' dr +''12 [r~k,]2~17, [12] V(r)r 0.5{[r) k 
J J 

+ fr~k+ u12, Class j drops in each radial where 17" = V[,'I k~ ' -~ ' ]  - V ~k ':~ a n d  r ~k~'i ' -~--  ~ / 0 . 5 { [ r l k ' ]  2 + t ,  J ~. 

interval have the same size and experience gas conditions at the edge of their sphere of influence 
determined by averaging over the radial interval and the drop classes. 

The gas phase equations are solved using a coordinate system identified as r~ ~, which follows 
all drops in the cluster; this coordinate system will be determined in the discussion on dynamic 
drop-gas interaction below. 

2.4. Turbulence effects 

Gas turbulence. Within the vortex, it is assumed that small scale turbulence results from the 
azimuthal slip velocity between drops and gas; this assumption is inspired by the experimental 
evidence of Crowe et al. (1996) that particles enhance turbulence when their size is of same order 
as the gas turbulent length scale (see evaluation below). Because of its inherent complexity, a 
rigorous treatment of turbulence is impractical. Instead, following the traditional Prandtl 'mixing 
length' approach, the laminar viscosity is assumed enhanced by a turbulent contribution I*T (cf. 
Schubauer and Tchen 1959), where /iv = pc, ATrcllu~N. Here us = ZjuvN~j/£jN~ is the mean slip 
velocity relative to the gas (the slip velocity appears because drop azimuthal motion generates small 
scale turbulent features as shown by order of magnitude estimates presented below), N~/is the j-class 
drop number in coordinates r~, and AT -- CT/Prc,, where PrG is the gas Prandtl number and CT is 
a constant containing the uncertainty associated with a scaling approach (e.g. the mixing length 
model). The influence o f  C-r upon the solution will be investigated to find the bounding behavior 
of turbulence. 

DT is calculated from Dv = (#G +/*v)/(pGScG) by prescribing the gas Schmidt number Scc. 
Similarly, k~ is calculated from kG = (/~G + #T)Cpa/Pro by prescribing Pra. The gas Lewis number 
is taken to be unity (Sca = PrG), an accurate assumption for a gas. 

Drop turbulence. The ratio of the Kolmogorov scale rlK to R, is estimated from Re-°75R~/R~ since 
~IK/R~ = Re 075. The characteristic flow velocity is uG~ = 103 cm/s. With #G = 4.2 x 10 4 g/(cm s), 
& = 2cm and R, = 2 x 10 3cm, one finds qK/Rj ~ O(1). Since R,/Rj ~ O(10) in the very dense 
configuration, many Kolmogorov-type eddies exist between adjacent drops. This not only supports 
the assumption regarding/~s, but also provides guidance for modelling how small turbulent scales 
affect drops. In analogy to Hidy and Brock (1970) who considered Brownian motion of particles 
induced by thermal fluctuations, we take into account how the fluctuations of small scale turbulent 
eddies (described using the mixing length approach) affect drop motion. Thus, the turbulent 
diffusion for drops is 

Ddvi = ATv~,(r,): [13] 

which corresponds to the Stokes Einstein formula with mean drop energy due to turbulence of 
ATmdj(v~jrj) 2. This mean drop energy corresponds to momentum fluctuations scaling as l, aRjr j and 
may be compared to the Stokes limit small Redj drag that scales as /~aRju~j. Thus, the basic 
assumption here is that the characteristic velocity scales with cluster size. The change in radial 
velocity of a class j drop due to the turbulent diffusion effect is assumed to be 

6ud,j = - D~v~ ~ [ln(nj/n °)]/Sr, [14] 

where the superscript zero denotes the initial conditions. This means Asdi=a(du~j /  
dt) = -D~v,  d{6[ln(n,/n°)]/&}/dt so that, using [1] to calculate d(ln n~)/dt, one finds 

Av~, = D~v{~{[8(ru~,)/Sr]/r]}/~r + ~[ln(n~/n°)]/Sr x 8u~r,/Sr}. [15] 

2.5. Pressure and dynamic drop-gas interaction modelling 

We consider the pressure to be the sum of several contributions all of  which are modeled 
below, 
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Large length scale drop-gas interaction. The body force term Apdj in [3] describes drop-gas 
quasi-static interactions for length scales much larger than the drop radius whereas the term 
involving v~j accounts for drag resulting from small-scale pressure gradients. To understand the Ap~j 
body force term, consider a drop located at rp; the net radial force on the drop is 
Fd, = --~/3~ cos 0 dA, where dA = 2~R 2 sin 0 dO is the annular drop area element and/3~ is the 
normal component of the large-scale pressure perturbation at the drop surface in a system of 
coordinates centered at the drop center. This large-scale perturbation arises from the non-local 
gas-drop interactions when there is a large number of drops. A Taylor expansion gives 
~, ~-~(rp) + (r - -  r p ) O p ( r p ) / O r  and using r - rp = R cos 0 gives Apdj = Fd~/md = --[4rcR3/(3md)]@/ 
Or = --(1/pL)g~/Or. The term @ / &  represents the volume gas force. 

Pressure effects due to centrifugal force on the gas. Let/7 be defined by O/7/Or = pGUgo/r. The 
quantity Off/& varies as M z, where M is the Mach number. Although O/7/Or is generally small 
because M<< 1, for small r the contribution to p from p might be important because UGO "~ r -1 and 
the centrifugal force may be substantial at high vortex strength. With the boundary condition 
/7(r = R~) = 0, inside the cluster/7 is given by 

f 
rmax 

= - pGr~o dr/r ~. [16] 

Pressure change due to convection. Let p '  be defined by ~p'/~r = --pG(Ouc~/6t + UGr ~UGr/ l~r) .  For 
1 2 slow speed, quasi-steady flow, p '  satisfies Bernoulli's relation, p'  +~pGUs~=p~(t). This 

approximation is acceptable here since M<< 1 and does not affect the transient nature of the 
pressure, as shown below. 

Totalpressure modelling. For mathematical convenience, we define p - p" + pamb -k-/7 q- p ' ,  where 
p is the large scale pressure field and pamb is the ambient, constant pressure. According to the 
definitions of FGr,/7 and p',  [7] becomes 

J T  

@"~Or = FG, = -- ~ ni(Fdrj + md,um). [17] 
/ =  1 

From [3] and the model for Apdj, 

Fdrj = -- maj[v,ju,~j + (@/ar)/pL]. [18] 

By defining the liquid volume fraction f ,  = (Z/n/m~/)/p, and combining the above two equations 
one obtains 

J T  

@"/Or = FGr = ~ n~(vsjmdj -- rndj)u,,~ +fvL @/&.  [19] 
j = l  

Both/7 and p' are associated with flow dynamics and vary as M 2. In contrast,/3 is associated with 
a quasi-static interaction. Thus, it is reasonable to equate p" and/3, giving 

Fs~ = @/~r = [ ~  n,(vs, md,-- md,)U,rjl/(1--ilL). [20] 
L /  

This equation is consistent with the physical situation and has the proper limiting behavior. 
Equation [20] shows that the volume force FGr characterizes the effect of cluster 'porosity'. As 
fir ~ 1, the cluster acts as one large liquid drop and the pressure gradient @/Or becomes 
unbounded unless usr --, 0, thereby portraying the correct physics. From the definition o fp  above, 
the quasi-steady approximation affects only p',  and the pressure term remains transient. 

Recasting o f  the conservation equations, rc is defined through a velocity uc~ such that u~ ~ = dr~k)/dt, 
where u,  characterizes the radial motion of the cluster as an entity. It is also convenient to define 
the operator Ak by 

A k V ~  V ( k ) -  V (I ' - I )  
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and 

which satisfies the relationship 

f.f 
' 

P~o-12) = psFGor  dr  

3, 

found by using [1], [8] and 
momentum are defined as 

FGor 2 dr  + Ak[rp~FGo(Ucr -- uG~)] [21] 

the definition of PG0. Annulus-averaged gas mass and azimuthal 

and 

where 

M t k  
- ~.2~ |4" 

(. 
G = p~r  dr  

i 
Jr~k I) 

~ ' ( k  1,2) (k - 1,2) / h,4r(k - 1'2) 
GO = P G O  I~,~ G , 

"(k  1,2) ~ ( k  - l / 2 ) ~ , ( k  - 1,2) 
GO -~- / c  ~ G 0  • 

With these new notations [6], [9] and [21] yield the following conservation equation for P~o 

M ~  - 1.2) d f ' ~ £  L:Z)/dt = Ak[rpG(u, -- UGr)(FG0 -- Fs0-~k -,:2)] 

+ r ~ nj(vvmdj -- rn~j)(r00j _ f, tkG0-,.2)) dr, [22] 
k II j 

where ucr = (2jnjmdjudri)/(Y, injmdj). In [22] the integral term gives the relaxation of angular 
momentum between gas and drops, while the difference term represents a source at the annulus 
boundaries. This source vanishes for irrotational (constant FG0) flOW. 

2.6 .  C lus t e r  b o u n d a r y  condi t ions  

Drop centrifugation results in the formation of a relatively thick drop shell inside the vortex. 
Thus, the cluster (formed by the drops and gas in that shell) exchanges mass, species, momentum 
and energy with the drop-free vortex regions in the vortex through an inner and an outer boundary. 
These boundaries are the statistical envelopes of the inner and outer drops as R~, = minj(rina) and 
Rc = maxj(rou~,,), where r~.j and rou,j are initially defined for all js. Thus, space is partitioned into: 
(1) an inner drop-free region where the gas conservation equations are solved; (2) the cluster region 
where both gas and drop conservation equations are solved; and (3) the outer gas region where 
heat, mass and species satisfy convective-diffusive conservation equations. 

The cluster appears to the surrounding gas as a porous material for which the drops represent 
the condensed phase. Thus, the surrounding gas cannot be easily engulfed by the cluster. Since the 
cluster does not have a solid boundary with the surrounding gas, there is limited shear at the cluster 
boundary and no exceptionally large velocity gradients are expected near the boundaries. However, 
relatively large gradients in the mass fractions and gas temperature may exist. Accordingly, the 
turbulent viscosity effect is included in the gas species equation through Scc and in the gas energy 
equation through PrG, but no equivalent term exists in the gas momentum equation. Heat and 
species in the cluster surroundings are assumed to diffuse and convect towards the cluster from 
a prescribed value at infinity. In all our calculations there is no vapor of the evaporating compound 
in the far field and TG~(t )  = T°~[1 + t / (3  x 10-2)] in order to simulate the passage of the vortex 
through an increasing temperature region; T°~ = T°~. 

If u,  > uGr, the cluster engulfs gas at a rate proportional to [rcpG(Ucr --  UGr)]r = R~; if UC~ > U¢, the 
cluster emits gas and only weak diffusion couples it to the surrounding gas. Equivalent arguments 
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are valid for heat transfer. To model this situation, a Nusselt number approach is used where the 
correlation is Nuc = 1 + C~Pr~Re~ and Re¢ = [p~r¢max(0, UCr- U~)/( I~c + /~T)]~* R~ is the effective 
Reynolds number. The power 1 is chosen for Prc and Re~ so that the expression for Nu~ agrees 
for C~ = 1 with the engulfing/emitting process described above. Constant C~ is a free, 
phenomenological parameter whose influence upon the solution will be studied. Consistent with 
the similarity assumption Sc~ = Pra, the boundary condition for the evaporating species is 

(r OYE/C3r),=Ro = Nu¢(Y~ -- Yv.~=R¢). [23] 

At the inner cluster boundary, ~F/~r = 0, where F = YE or F = Tci. At the vortex center (taken 
to be an infinitesimally small radial distance to avoid singularities), the gradients of velocities and 
all dependent variables gradients vanish. 

3. METHOD OF SOLUTION 

The conservation equations are in Lagrangian frames except for the gas energy equation which 
is solved in an Eulerian frame as a radial difference equation. To solve the gas conservation 
equations, [6] and [10] are integrated over intervals in rc by evaluating the non-exactly-integrable 
term at r~ ~÷ ~2~ similar to the definition of r~ *+ ~.,2~. This yields equations for the time evolution of 
average gas and fuel vapor masses in the corresponding annuli. Equation [11] is similarly integrated 
except that it is steady because M<< 1. 

The number of class j drops per unit vortex length in annulus k is 

N f f  + i,,2) ~ ¢'r ( k + l )  = zrcJ;~k, njr dr, 

so [1] reduces to 

dN~ k+ ' 2~ /dt = O. 

The value ofp,n~ is known and/5 is calculated using [16], p '  is calculated from Bernoulli's relation, 
and b from [20]. The gas energy equation determines UGr(t, r) and hence us(t, r) while T~(t, r) is 
calculated from the equation of state. Further, p~(t, r) and YF(t, r) are calculated from annular 
versions of [6] and [10], respectively; the values of r'G0 determine uao; r~ and constants N~ k+ 1/21 
determine nj; Fo0~ is calculated from [4]; rj and ud~i are calculated from [2] and [3], respectively. The 
drop internal temperature profile, R/ and rhej are calculated using previously developed models 
(Bellan and Harstad 1988; Harstad and Bellan 1991). 

The system is solved as a set of first order nonlinear differential equations in time using piecewise 
linear interpolation procedures between the r~ and rj coordinates to allow calculation of  
drop-dependent variables in the gas coordinate system. The algebraic solution procedure for the 
nonlinear drop equations requires iteration at each time step. 

4. INITIAL CONDITIONS 

Appendix A shows that an arbitrary initial distribution cannot be imposed for uoo, u°o(r °) because 
the Jacobian J of the mapping r ° ~ r may vanish causing the drop system of  equations to become 
singular. A sufficient condition for the mapping to be regular is that the Jacobian be quasi-steady. 
This imposes the following constraint on U°o(r°). 

If u°~ = 0, then (dJ/dt)  ° = 0; additionally (d2j/dt2) ° = 0 if (dudr/dt) ° = A °, where A ° is constant. 
Therefore u~o(r °) is determined through the momentum equation as 

(u~o/r)°= A ° -  VO•OGr [24] 

. o  ° ,f o[Ao o o o 
= - vs uor(r )1 [251 

with A ° ~> v°max(u~r). 
Since u~0 eventually relaxes to uGo, it is still possible to generate a singularity at long times for 

certain choices of U°o(r°). However, turbulent diffusion mitigates this effect, making a singularity 
avoidable. Thus, for each initial-size class, the initial drop radial acceleration, drop azimuthal 
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velocity, drop size, and drop temperature are prescribed as above, u°o may contain an additional 
term with respect to the expression in [25] for more complex situations than (dudr/dt) ° = A °. This 
additional term is a drop cluster solid body rotation, BOor °, which gives additional cluster expansion. 

The initial number of drops per vortex length in class j is 

f t,trOu 
N~; =- 27z nor, dr 

J"L 
[26] 

where r°~# and r°,,j are the corresponding initial values of rinj and ro,,j. 
n ° is defined from the value of N~s, and the radial distribution of the probability p/(r) of finding 

a class j drop at location r as follows 

nl '= N~,pj(r) for r7,,, <~ r ~< r°,,,s. [271 

pj(r) is measurable, but its value is sometimes uncertain as it depends upon instrument calibration 
(Presser et al. 1994). Here we chose a functional form that yields profiles consistent with 
observations (see below), while being general enough to allow the study of a myriad of profiles 
and so addresses the uncertainties in measurements; thus 

where 0 < q~ < oo and 

so that 0 ~< q ~ r/ou,j and 

where 

pj(r) = A,,~/",e "," [28] 

r h =- (r -- rin,,)/rq, [29] 

max  p j ( r ) = A q ,  e -~' at rh= 1, [30] 

r,,j=-b~iR °, 0~b,-G< 1, [31] 

rou,j=bosR °, b 0<boil< 1, [32] 

G =- ~j(rout,i -- ri,,s), 0 ~< :~s ~ 1. [33] 

rl<,,,,,J = ~i t and the maximum value of nO is located at a fraction ~i of distance from the inner 
edge ring to the outer edge. If qj ~ 0, then the distribution is uniform; if qj>> 1, the distribution 
is a sharp, Dirac delta function distribution. By requiring 2~r~7,u].Jpj(r)r dr = 1 one finds 

A q = { 2 n r q [ ~ 7 ( q , + l ,  qi ) r f ~ q  ~,(,~ ~ l ~  ' q/ ~ + q  \ + 2 ,  [34] 

where 7(a, b) =- ~gt"-'e ' dt.  
pj(r) provides the spatial dependence of n °, whereas N~j, max4(n°), or the global initial air/liquid 

mass ratio ~0 can be prescribed to yield an initial drop count. 
Additional initial dependent variables to be prescribed are the gas pressure and temperature; 

cluster radius; irrotational component A°0, and solid body rotation component B°o of the gas 
tangential velocity 

u°o = A°~/r ° + B°or ° [35] 

according to the findings of Nieh and Zhang (1992) that the tangential gas velocity in a strongly 
swirling vortex combustor exhibits a Rankine type of vortex flow. u °, is calculated from [11]. 

The initial properties of gas (air) and liquid are also prescribed. Constants CT and Ct are 
considered parameters of the problem. 
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Table 1. Thermophysical properties used in the calculations 
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n-Decane Air 

Heat capacity of liquid Crt = 0.523 cal/(g~K) 
Liquid density pL = 0.734 g / c m  3 
Liquid conductivity kL = 2.5 x 10 4 cal/(cmOK s) 
Liquid viscosity pt = 2.6 x 10 -2 g/(cm s) 
Liquid diffusivity D~t = 4 x 10 -5 cm:/s 
Latent heat of evaporation Lo,.,p = 73.92 cal/g 
Heat capacity of vapor Cp~,o = 0.4 cal/(g°K) 
Normal boiling point temperature Tb = 447.7°K 
Molecular weight W = 142 g/mole 

Cp. = 0.241 cal/(g°K) 
~V.~ = 28.9 g/mole 
p ~  = 4.2 x 10-4g/(cm s) at 1000 K 
P r c =  0.8 

ACp = CpL -- C~ = 0.0292 cal/(g°K), fitted for the saturation pressure curve. 

5. RESULTS 

5.1. Baseline behavior 

Due to the large n u m b e r  of parameters  (table 1), for reference a baseline calculat ion was 
performed, consistent  with previous results (Bellan and Hars tad  1990) for monodisperse,  uni formly 
distr ibuted drop clusters in vortical flows. These results indicated that very dense sprays have 
Ri /R  <~ 10, dense sprays have 10 < R~/R < 15, moderately dense sprays have 15 < R~/R < 30, and 
dilute sprays have Ri /R  >1 30. For  n-decane it was found (Bellan and  Hars tad 1990) that for 
O ° = 0.314 (stoichiometric is 15.0) the cluster was dense, for • ° = 0.785 the cluster was moderately  
dense, while for • ° = 1.57 the cluster was on the borderl ine between moderately dense and dilute. 
In the present model  n need not  be un i form and the initial drop size is not  monodisperse  so, 
depending  upon  the n o profile, a global O ° =  0.314 may s imultaneously involve very dense, 
moderately  dense and dilute regions. 

The drop sizes chosen here are relevant to gas turbine  engines, Diesel engines, furnaces and 
medical sprays. The initial condi t ions  for the velocities are chosen only for illustrative purposes. 
The initial gas and drop temperatures are relevant to a variety of combus t ion  systems. For  ~j and  
q, chosen as in figure 2 caption,  the initial dis t r ibut ion is dense, except for the inner  part  of  the 
cluster, al lowing meaningful  compar isons  with previous results. Because the ratio plotted is an 
average, the drops of  a given j-class  might be in a denser or more dilute configurat ion depending 
upon  the specification of  max,o(n °) for each initial-size class. 

Figure 3, the dependence of  n on re, shows that  the initial profile evolves into an increasing 
funct ion of re except at the cluster 's outer bounda ry  region. The drop-free innermost  region of the 
cluster expands as drops centrifuge to outer  vortex portions.  In  this inner  region, smaller 

O.2 

0.1 

0"00 t 2 3 

7" c ~ C ~ 2  

Figure 2. Ratio of the average drop diameter by the average distance between the centers of two adjacent 
drops versus the coordinate associated with the gas in the cluster at different times. Initial parameters are: 
O°=0.314, ~ , =  1000° K, ir~s = 350° K, R°=2 × 10-~cm, R°=2.5 x 10 3cm, max,~(n,°)/ 
maxr,,,(n 0) = 1/3, ~ = ~t: = 0.5, qj = q2 = 0.5, R ° = 2 cm, b, = b,2 = 0.1, initial drop acceleration for both 
classes is 20 cm/s:, null initial drop spin rate for both initial-size classes, u°,, = lO0/r~ cm/s, CT = 5 x 10-:, 

C~ = 0.35. Refer to table 2 for the legend. 
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Table  2. 

Line symbol  Time.  s 

6.99 × 10 5 
7.69 × 10 4 
1.47 x 10 
2.17 x 10 
2.87 x 10 
3.56 x 10 
4.26 x 10 
5.66 x 10 -~ 
7.06 x 10 
8.39 x 10 3 

initial-size-class-1 drops dominate initially and remain for longer times as shown in figure 3(b) and 
(c). Although initial-size-class-1 drops dominate the outer edge at first, as the calculation proceeds 
and the cluster expands, the initially larger initial-size-class-2 drops are centrifuged further out. 
Since in the same surroundings their evaporation rate is slower because of their larger thermal 
inertia time, they remain larger and are centrifuged further. Initial-size-class-1 drops dominate the 
central part  of  the vortex throughout the calculation. Similar variations of  n, peaked initially at 
the mean location in the annulus of a swirling pressure-atomized burning spray, were observed by 
Gupta  et al. (1996). In those observations, the peak was decreasing with downstream axial location, 
which in our axisymmetric configuration would correspond to an evolution in time. The central 
core region of the spray devoid of drops became enlarged with axial position, similar to our 
predicted time evolution. Aftel et al. (1996) found similar variations of n with radial distance for 
swirling sprays produced by an air-assist atomizer. For both constant mass flow and constant 
momentum flow, and for all types of  atomizing gas, the profiles display a maximum in the mean 
part of the annulus, relaxing with increasing axial distance in a similar manner to our predicted 
temporal relaxation. 

Figure 4 shows the size distribution of the two initial-size classes within the cluster at different 
times and demonstrates that each initial-size class develops its own size distribution. Drops at the 
cluster periphery are in contact with hotter gas and evaporate faster, whereas drops located near 
the mean cluster radius are in contact with colder gas and evaporate slower (see figure 5). The lower 
gas temperature in this part  of  the cluster is attributed to the higher value of n ° since the heat 
required to evaporate more drops represents an increased heat sink for the gas. The larger gas 
temperature at the outer cluster periphery is due to the continuous flux of hot gas encountered 
as the cluster expands into hotter surroundings. The larger gas temperature at the inner cluster 
periphery results from centrifugally-induced drop depletion. In the absence of drops, the gas has 
no heat sink and its temperature remains near the initial value. A sharp temperature gradient 
develops as rc increases, corresponding to the increase in n. The nonmonotonic behavior for 
r~ < 1 cm is attributed to different contributions to n from the two initial-size classes, n is a 
monotonically increasing function of rc within the mean region of the cluster; however, the n2 profile 
develops a slight minimum within the mean region of the cluster. This slight minimum corresponds 
to the slight local maximum in the temperature profile since there is a decreasing heat sink on the 
gas. This slight local temperature maximum impacts evaporation and figure 4(b) shows the 
evolution of a slight dip occurring for rc slightly smaller than 1 cm. 

Measurements of the Sauter mean diameter (D32 = [E~s_- r l r t , ( 2 R i ) 3 ] / [ Z s  J r  l r / , ( 2 R j ) 2 ] )  in sprays reveals 
behavior similar to our calculations. Presser et al. (1986) found that in swirling isothermal hollow 
cone sprays, D32 reached a minimum at r = 0 and peaked in the mean part  of  the annulus; the value 
of D32 at the outer edge of the spray was higher than at r = 0, also in agreement with our 
predictions. Our values at the outer cluster boundary are relatively lower with respect to those at 
the inner cluster boundary than in the experiments because in our calculations the cluster 
encounters regions of larger surrounding temperature as a function of time whereas in the 
experiments the surrounding gas has the same temperature as a function of axial distance. The axial 
evolution of the measured profiles shows decreasing D3: values corresponding to the time evolution 
of our calculations. McDonell et al. (1992) measured D32 as well as D~0 = E~ r ~nj(2Ri)/n for both 
reacting and non reacting swirling air-assist sprays and showed similar results to Presser et al.'s 
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Figure 3. Total drop number density (a), drop number density of  initial-size-class-l, (b) and drop number 
density of initial-size-class-2 (c) vs the radial coordinate in the cluster at various times. Initial conditions 

and parameters are listed in the figure 2 caption. Refer to table 2 for the legend. 
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Figure 4. Residual drop radius for initial-size-class-I (a) and initial-size-class-2 (b) vs the radial coordinate 
in the cluster at various times. Initial conditions and parameters are listed in the figure 2 caption. Refer 

to table 2 for the legend. 

(1986) except that in McDonell et al. (1992) the profiles continue to increase with radial distance 
up to the edge of the spray; obviously, the boundary conditions at the edge of the spray play a 
major role in determining these values. Data from the experiment showed the formation of an 
enlarged core as a function of the axial position where both D32 and D~0 reached minima, which 
is in qualitative agreement with our results. 

The n and n/evolution is elucidated from the drop tangential velocities and the angle between 
the velocity vector and the tangential coordinate. The tangential velocities exhibit a minimum at 
a location close to the inner cluster periphery whereas the velocity angle exhibits a maximum at 
the same location; this maximum decreases with time and shifts towards larger re. The minimum 
tangential velocity causes accumulation of drops and the resulting sharp increase in n near the inner 
cluster periphery. The velocity angle is affected by both tangential motion and particle 
centrifugation. As time increases, the largest centrifugation shifts from the inner cluster periphery 
to the central vortex region. 

Figure 6 illustrates the development of YF vs re. For  small times the profile is asymmetric with 
respect to the mean radial location in the cluster. The smaller value of Yv, both at the inner and 
outer cluster periphery, corresponds to regions of low n. At large times, the profiles become almost 
symmetric with respect to the mean radial location in the cluster and the mean evolves almost into 
a plateau. The low YF values at the inner and outer cluster peripheries still correspond to the regions 
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Figure 5. Interstitial gas temperature in the cluster versus the radial coordinate in the cluster at different 
times. Initial conditions and parameters are listed in the figure 2 caption. Refer to table 2 for the legend. 

o f  low n. The sharp edge between the inner cluster periphery and the mean plateau corresponds 
to the sharp edge o f  n at the same location. 

5.2. Effect of  the air/fuel mass ratio, ~o 

Results f rom calculations performed with ~0 o f  0.785 and 0.157 are compared  with those 
obtained with ~0 = 0.314 in figures 7-13. All other  values o f  initial conditions and parameters 
remain the same (see figure 2 caption). 

Figure 7 shows the ratio o f  the average drop radius to the sphere o f  influence radius, giving an 
indication o f  the cluster density. Denser clusters contain more mass and thus the centrifugal force 
is larger. Figure 8 depicts n vs re for the three different calculations at the same times and shows 
that  denser clusters are centrifuged further out. When the cluster is initially more  dilute, n becomes 
more  uniform inside the cluster (except at the inner and outer peripheries o f  the cluster), a 
consequence o f  the change in the drop velocity profiles. Figure 9 shows that the drop radial velocity 
in a more  dilute cluster is larger in the inner part  than in the outer part; the opposite occurs in 
a denser cluster. Figure 10 shows a similar change in behavior  for Udo with an additional 
development  o f  a more  uniform profile in the central and outer part  o f  the cluster. The drag force 
and evaporat ion rate strongly couple the velocity and n profiles, making it impossible to determine 
cause and effect. The results in figure 8 validate the uniform n assumption for dilute drop clusters, 
but  for dense drop  clusters this assumption seems unrealistic. 
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Figure 6. Interstitial mass fraction of the evaporated compound in the cluster versus the radial coordinate 
at various times. Initial conditions and parameters are listed in the figure 2 caption. Refer to table 2 for 

the legend. 
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Figure 7. Ratio of the average drop diameter by the average distance between the centers of two adjacent 
drop diameters vs the radial coordinate at 7 × 10-~s (solid lines) and 3.56 × 10 ~s (dotted lines) for 

@0= 0.314 ( I ) ,  0.785 (A), 1.57 (O). 

Mean radial velocities as a function of  the radial position were measured by Presser e t  al.  (1986), 
Gup ta  et  al.  (1996) and McDonel l  e t  al,  (1992). In all these experiments, the mean radial velocity 
increased with r, exhibited a peak and further decreased to the edge o f  the spray. In the experiments 
o f  McDonel l  e t  al .  (1993), the mean radial velocity, plotted for temporal  (not initial) size-classes, 
either exhibited a local maximum near the axis, had a slight minimum and then increased further 
with r, or was an increasing function o f  r. Our  predictions are consistent with these experimental 
observations.  The decay with axial distance observed in the experiments is consistent with the 
temporal  decay of  our  predictions. 

Mean  azimuthal  velocities were measured by McDonel l  et  al .  (1992) and show the same variation 
as our  predictions: a maximum close to r = 0, then a dip followed by a further increase as a function 
o f  r and the eventual reaching of  a plateau with increasing axial position duplicating our temporal  
predictions. The relaxation o f  the profiles with axial distance in the data  again validates our  
predicted temporal  relaxation. The qualitative agreement of  our  radial and azimuthal  velocity 
predictions with data indicates that  the two-way dynamic coupling of  drops and flow is modeled 
correctly. 

Figure 11 shows TG~ vs re for three selected times and three values o f  ~0. When the gas 
temperature exceeds the initial drop temperature,  a denser drop cluster provides a greater heat sink 
for the gas, resulting in much lower temperatures at the cluster center. Radial variation of  the mean 
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Figure 8. Total drop number density vs the radial coordinate at 7 x 10 -5 s (solid lines) and 3.56 × 10 -~ s 
(dotted lines) for @0 = 0.314 ( I ) ,  0.785 (A), 1.57 (0). 
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Figure 9. Radial drop velocity for initial-size-class-1 vs the radial coordinate at 7 x 10-Ss (solid lines) 
and 3.56 x 10 -3 s (dotted lines) for q~0 = 0.314 (11), 0.785 ( , ) ,  1.57 (O). 

temperature measured by Presser and Semerjian (1988) for swirling air-assist sprays showed that 
profiles are a strong function of  the atomization air flow rate. For low flow rates and close to the 
atomizer, the temperature decreases from the centerline to a minimum, further increases to a 
maximum and decays to the edge of  the spray. At further axial positions, the temperature increases 
from the centerline to a peak that is located to increasing radial positions as the axial distance 
increases, and finally decays to the spray edge. These profiles are typical of  hollow cone sprays. 
For  high atomization flow rates, in the near field of  the atomizer the temperature decreases from 
a maximum on the centerline to a local minimum in the mean part of  the spray annulus, increases 
again and finally decays at the edge of the spray. In the far field, the temperature profile forms 
a plateau from the centerline to a radial position increasing with axial distance, and finally decreases 
to the edge of  the spray. According to the authors, this profile is indicative of  an inner and outer 
flame sheet. The predictions displayed in figure 11 compare qualitatively very well with the high 
atomization flow rate situation, except that at the outer cluster edge the temperature remains large 
due to the simulated passage of  the cluster through regions of  increasing surrounding temperature. 
The qualitative agreement of the mean temperature in the near field and the above discussion on 
D3z and D~0 indicate that the thermodynamic and thermophysical coupling of  drops and flow are 
correct. 
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Figure 10. Tangential drop velocity for initial-size-class-I vs the radial coordinate at 7 × 10 -5 s (solid lines) 
and 3.56 × 10-3s (dotted lines) for ~0= 0.314 (I) ,  0.785 (&), 1.57 (Q). 
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Figure 1 I. Development of the interstitial gas temperature profile for ~0 = 0.314, 0.?85 and 1.57. All other 

initial conditions and parameters are listed in the figure 2 caption. 

Figure 12 shows the radial variation of the residual drop radius for initial-size-class-l, R~/R~, 
at various times, indicating the result of the interaction between drops and gas. The drops in denser 
clusters take considerably longer to evaporate and the drop size distribution is substantially more 
nonuniform. This is because the drop competition for heat results in a slower heating rate, and 
heat transported from the cluster boundaries towards the interior has greater difficulty reaching 
the cluster center than when the cluster is dilute. Our predictions show that the situation is 
exacerbated for the initially larger drops (not illustrated). 

Both n and the evaporation rate control the distribution of Yr. Figure 13 shows that when the 
cluster is initially denser, the maximum value of YF is larger and the distribution is more symmetric 
with respect to the mean location in the cluster. The last effect is attributed to the greater 
centrifugation which (differentially) brings drops to the outer cluster boundary. 

5.3. Influence oJ the initial drop size distribution at f ixed O0 ° 

Calculations were performed for monodisperse initial drop size distributions (the simplest case) 
for ~0 = 0.314 with R ° = 2 x 10 3 cm. The nondimensional radius of  the sphere of  influence is 
exactly the same as in the typical calculations described in 5.1, but n o is much larger (see figure 
14) than in the bimodal initial distribution of the baseline calculation because the liquid mass is 
the same but there is a substantial number of  smaller drops. Since the drops are smaller on average, 
centrifugation effects are reduced and the drops penetrate the hot surroundings less. Thus, the gas 
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Figure  12. Res idua l  d rop  rad ius  for initial-size-class-1 vs the radia l  coord ina te  at 7 x 10-Ss (solid 
lines), 2.87 x l0  3 s (dashed lines) and  3.56 x l0  -3 s (dot ted lines) for • ° = 0.314 (m) ,  0.785 (A) ,  1.57 

(O). 
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Figure 13. Mass fraction of the evaporated compound at 1.44 × 10 -3 s (solid lines), 2.87 × 10 -3 s (dashed 
lines) and 4.26 x 10 -3 s (dotted lines) for qb ° = 0.314 (m) and 1.57 (A). 

t empera tu re  d i s t r ibu t ion  is a lmost  identical  to that  o f  the basel ine calculat ion,  except  for  the outer  
third o f  the cluster  where it is subs tant ia l ly  lower. D r o p s  loca ted  in the outer  ha l f  o f  the cluster  
experience a sl ightly reduced evapora t ion  rate  towards  the end o f  their  lifetime. Dynamics  and 
evapo ra t i on  are thus cont ro l led  by qb ° in the inner  ha l f  o f  the cluster  and  by n o in the ou te r  half. 
The  persis tent  s t rong nonun i fo rmi ty  in n and  the quickly-evolving nonun i fo rmi ty  in R dur ing  the 
ear ly par t  o f  the ca lcula t ion  in the inner  par t  o f  the cluster  are bo th  notewor thy .  F o r  example ,  
when t =  3.56 x 10-3s, at the inner  cluster  b o u n d a r y  R / R ° ( r ~ = O . 1 2 c m ) =  5 × 10 -2, whereas  
R/R°(rc = 0.8 cm) = 5.2 × 10 -~. 

The evolu t ion  o f  an ini t ial ly un i form d rop  number  densi ty  having a monod i spe r se  size 
d i s t r ibu t ion  is an i m p o r t a n t  theoret ical  issue. Calcu la t ions  were pe r fo rmed  for  this case using 
R ° = 2 × 10 3 cm and qb ° = 0.314 (q = 10 -3 to give un i fo rm n°). The results in figure 14 show that  
except  for  the ou te r  and  inner  por t ions  o f  the cluster (20% and 10% o f  the radia l  span,  
respectively),  n remains  uniform.  Even if  n is uniform,  nei ther  the TG~ d is t r ibu t ion  nor  R / R  ° stay 
un i form indica t ing  that  the heat  t ransfer  character is t ic  t ime exceeds the d rop  lifetime. Thus,  the 
d rops  at  the cluster  pe r iphery  effectively ' screen '  the heat,  and  only heat  not  abso rbed  by the drops  
at the cluster  edges penet ra tes  to the c luster ' s  central  region.  In the cluster ' s  central  region,  the gas 
t empera tu re  is cons iderab ly  lower than  at  the per iphery  because the d rops  extract  subs tant ia l  heat  
f rom the gas due to the t empera tu re  difference and this heat  does not  get replenished.  F o r  example ,  
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Figure 14. Drop number density at 7 × 10 -5 s (solid lines), 1.47 × 10 -3 s (dashed lines) and 2.87 × 10 -3 s 
(dotted lines) for two monodisperse size distributions (R ° = 2.0 × 10 -3 cm). Initially, one drop number 

density is uniform (A) and the other has the parameters given in the figure 2 caption (11). 
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Figure 15. Total drop number density vs radial position at 7 x 10 -5 s (solid lines) and 8.4 × 10 -3 s (dashed 
lines) for bimodal size distributions with O°=0.314 and R~=2.5 × 10-3cm (i);  0.785 and 
R~ = 2.5 × 10 'cm (A); 0.314 and R~ = 3.0 x 10 'cm (O);0.785 and R~ = 3.0 x 10 3cm (V). All other 

initial conditions and parameters are listed in the figure 2 caption. 

when t -- 3.56 x 10 -3 s, the maximum R/R ° is 0.52, whereas the drops at the inner edge of the 
cluster have completely evaporated and R/R ° at the outer cluster edge is 0.31. Comparison with 
Bellan and Harstad (1990) indicates that if n o is uniform, n will stay uniform throughout most of 
the cluster, but the initial uniformity of the drop size distribution is not maintained. 

The effect of changing one of the drop sizes of an initial bimodal distribution was investigated 
for ~ ° = 0 . 3 1 4  and for ~ ° = 0 . 7 8 5 .  In both cases, now R ° =  3.0 x 10-3cm, instead of 
R ° = 2.5 × 10 .3 cm, When R ° is larger, n o is smaller (because the initial total mass is the same), 
and centrifugation effects eventually become more important. However, when @0 = 0.785 there is 
less liquid mass than when ~ 0 =  0.314, and so centrifugation effects become less important. A 
comparison of the n profiles for the two values of ~0 and the two bimodal distributions appears 
in figure 15. When R ° = 3.0 x 10-: cm, the drops remaining at the outer cluster periphery at the 
end of the calculation are large drops from initial-size-class-2 that have not completely evaporated. 
Since maxdn°/max4,n ° is the same as in the previous calculations, n o is now smaller than in the 
baseline calculation; this is why drops in initial-size-class-1 evaporate at approximately the same 
rate as in the baseline calculation (section 5.1), while being centrifuged slightly less. The small 
increase in the evaporation rate of drops in the outer half of the cluster is attributed to the fact 
that initial-size-class-2 eventually expands the cluster further and allows more heat to penetrate the 
cluster. This interpretation is supported by the fact that the ultimate TG~ is substantially higher at 
the cluster edge when initial-size-class-2 consists of larger drops. At early times, when R ° is smaller, 
the larger value of n promotes a stronger drop-gas interaction. As the drops are centrifuged, they 
entrain gas, increasing uGr; the cluster expands further, encountering larger gas temperatures which 
promote heat transfer and result in a larger gas temperature at the outer cluster edge. 

Centrifugation of these larger drops also disperses vapor very effectively into the surroundings; 
although the maximum value of Yv is slightly lower when the drops in initial-size-class-2 are larger, 
vapor penetration into the surroundings is more effective. This physical picture agrees with the well 
established fact in spray combustion that the small drops in a spray are responsible for spray 
ignition, whereas the fuel vapor produced by the larger drops is responsible for flame propagation. 

All these effects are greatly reduced when ~0 = 0.785 instead of ~0 = 0.314, indicating that the 
dense regions of a spray contain more control parameters than the dilute regions. Thus, any spray 
optimization process is more likely to be successful if initiated in the dense spray region near the 
atomizer. 

At a fixed time, larger maximum Yv is obtained for given O0 when R~ is smaller, whereas larger 
vapor penetration into the ambient is obtained when R ° is larger. The question then arises whether 
the evolution of an initial trimodal distribution can combine these characteristics, both of which 
are desirable for the combustion of atomized liquid fuel. Figure 16 illustrates TGI and Yv obtained 
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with a trimodal distribution when R ° = 2 × l0 -3 cm, R ° = 2.5 × 10 -3 cm and R ° = 3 x 10 -3 cm 
with max4(n °) ---0.5 max,~(n °) and ~ 0 =  0.314; the evolution of  the trimodal TG~ and Yv are 
being compared to the two bimodal ones, one having the largest initial-size class 
R0 = 2.5 × 10-3cm and the other having R ° = 3 × 10-3cm. The differential centrifugation/ 
evaporation according to the initial-size class causes the cluster to penetrate more into the 
surroundings than did a bimodal distribution cluster with R0 = 2.5 × 10 -3 cm (compare figure 
16 with figures 5 and 6). Comparisons of  the maximum Yv attained show that it is larger 
with the trimodal distribution than with the bimodal distribution having R ° = 3 × 10 -3 cm (not 
illustrated). Notably, the trimodal TG~ at the outer cluster edge is almost as high as the 
bimodal one when R ° = 3.0 × 10 -3 cm (not illustrated), whereas T~ near the inner cluster edge 
(innermost radial coordinate where all size classes coexist) is lower than for either bimodal 
calculations because of  the higher n. With the exception of this particular location, the 
initial-size-class-1 drops evaporate at the same rate as in the bimodal distributions having 
R ° = 3.0 × 10 -~ cm, but the value of  n o is slightly lower. The introduction of the third initial 
drop size lowers n o by about 20%, a significant impact causing smaller centrifugation of this 
additional class and slightly slower evaporation rate towards the outer cluster edge. The lower 
evaporation rate also observed towards the inner cluster edge is, as explained above, attributed 
to the lower TG~ at that location. The evaporation rate of  the third class is considerably lower 
near both inner and outer boundaries than for the bimodal distribution, despite having less 
than half the initial drop number density. The larger drop sizes enhance centrifugation of  this 
third class, particularly at the inner cluster boundary. 

To summarize the above discussion, polydispersity both enhances penetration of the evaporated 
compound into the surroundings and increases the maximum YF within the cluster. Thus, 
polydispersity is recommended to enhance spray combustion. 

Since polydispersity benefits spray combustion, it is important  to find how the relative 
number of  drops in the initial size distribution impacts the quantity and distribution of the 
evaporated compound.  Calculations were therefore performed with maxro(n °) switched between 
the two initial size classes for a situation that was otherwise baseline. This switch decreased 
n (by about  25%) since more mass is contained in the initially larger-size class drops which 
now have a much larger drop number density. Comparisons with the baseline case show that 
centrifugal effects depend on n and for the same mass, a smaller n results in smaller 
centrifugation. Comparisons between early time behavior show that evaporation is now slower 
and the evaporated compound penetrates the surroundings less. Thus, it is recommended for 
spray combustion that a polydisperse distribution should contain a proportionally larger 
number of small drops. 
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Figure 16. Interstitial gas temperature and mass fraction of the evaporated compound vs the radial 
coordinate for a trimodal distribution with R~ = 2.0 x 10 -3cm, R~ = 2.5 x 10 -3cm, and 

R~ = 3.0 x 10 )cm. All other initial conditions and parameters are listed in the figure 2 caption. 
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F i g u r e  17. C o m p a r i s o n  o f  the  d r o p  n u m b e r  dens i t i e s  vs  r a d i a l  c o o r d i n a t e  for :  q, = q2 = 0.5, ct, = ~2 = 0.5 

( I ) ;  q~ = q2 = 2.5, ct, = ctz = 0.5 (4 , ) ;  q~ = 2.5, q.~ = 0.5, ct~ = 0.25, ~_~ = 0.5 ( 0 )  a t  7 x 10 -5 s (sol id  l ines),  

2.2 x 10 3 s (dashed lines) and 8.4 x 10 -3 s (dotted lines). All other initial conditions and parameters are 
listed in the figure 2 caption. 

5.4. Effect  o f  the initial drop number distribution, n °, profile 

Given the uncertainties in measurements  o f  n o (Presser et al. 1994), qj and ~j (see [30] and [33]) 
have been varied to change the width and the location o f  the peak of  the distribution n°(r°). In 
one calculation qt = 2.5 and c~ = 0.25 while q2 and ~2 retain their baseline values of  0.5 and 0.5 
respectively; in another  calculation q~ = q2 = 2.5 and ct, = ct2 = 0.5. Additionally, a calculation 
(discussed above) with a monodisperse drop collection has also been performed with q = 10 3 and 
R ° =  2 x 10 -3cm to simulate a uniformly-distributed, monodisperse cluster (e.g. Bellan and 
Hars tad  1990). In all these calculations @0 = 0.314 and the other initial conditions are those o f  
the baseline calculation (see figure 2 caption). The evolution o f  n for all the different bimodal  
distributions is illustrated in figures 14 and 17. 

An  initially monodisperse,  uniformly-distributed collection o f  drops quickly develop 
nonuniformities in TG~ and R,, thereby invalidating the monodisperse assumption in t ime-dependent 
calculations for initially dense sprays. However,  figure 14 shows that n remains uniform in the 
central cluster, a l though nonuniformities develop towards the inner and outer boundaries.  Thus, 
if boundary  effects are unimportant ,  the uniform n assumption might have some validity for 
engineering calculations. These results are consistent with those found for a binary size distribution 
in section 5.3. 

The effect of  larger n ° gradients was investigated using q~ = q2 = 2.5 (the baseline value is 
0.5). Figure 17 shows that  in this case extremely dense regions of  drops exist at the cluster 
center where the drops are just a few diameters apart.  Examinat ion o f  the drop size distribution 
shows that in the central cluster the residual drops are larger, and thus take longer to evapo- 
rate. 

Despite the more  nonuni form initial drop size distribution, time relaxation still causes the 
majority o f  the cluster (excluding about  15-20% where edge effects are important)  to have a 
distribution that increases with radial location; however, the gradients are now larger. 

The effect o f  different initial maxima and different skewness for the two initial size classes has 
been investigated by setting ~ = 0.25, c~2 = 0.5, q] = 2.5 and q2 = 0.5, rendering n o narrower and 
peaked closer to the inner cluster boundary .  The different locations of  the n o and n o maxima 
produce a nonmono ton ic  n o peaked at the same radial position as the more numerous  
initial-size-class-1 drops. Examinat ion o f  the results shows that the minimum in To~ corresponds 
to a maximum in n2. The low TG~ in the cluster center affects drop evaporat ion;  pockets of  relatively 
large drops are long-lived for both initial-size classes, and at the end of  the calculation an 
unevaporated  pocket  o f  initial-size-class-2 drops remains in the minimum TG, region. Eventually, 
the initial-size-class-2 drops are concentrated near the inner and outer cluster peripheries, whereas 
most  initial-size-class-1 drops are in the central cluster. 
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The different n; .° profiles presented here illustrate only a few possible configurations, but 
demonstrate that the behavior of a cluster of  drops is highly sensitive to the initial conditions. Thus, 
when comparing numerical results to experimental observations, it is essential that the same initial 
conditions be used. 

5.5. Effect of transport from the surrounding to the cluster 

Section 2 showed that heat and mass transfer from the cluster to the surroundings are modeled 
globally using Nuc. The constant C~ appearing in Nuc was assumed to be 0.35 in all above 
calculations. To see the effect of C~ calculations are performed with C~ = 0.175, a value which 
reduces heat and mass transfer to the cluster lowering the outer T~; results are not illustrated for 
the sake of  brevity. At the outer cluster edge, TG~ is now 10% lower than for typical previous cases, 
causing a reduction in the evaporation rate, and so giving slightly larger drops near the outer cluster 
boundary. Although the outer evaporation rate is now lower, YF is larger by about 20% at the 
cluster outer edge because less air enters th.e cluster from the surroundings. Because YF is now 
larger, the evaporated species flux and the gas flux towards the vortex core also increase. These 
changes affect only the outer third of  the cluster. Thus, when qb ° = 0.314, a 50% reduction in C~ 
results in a maximum reduction of  10% in Tc~ and a maximum increase of  20% in Yv in the outer 
third of the cluster. This effect is expected to become less important as @0 increases. 

5.6. Effect of small scale turbulence 

As discussed in section 2, small scale turbulence is modeled using a global turbulent viscosity 
proportional to the constant Cr. Varying Cr shows how azimuthal drop motion affects small scale 
turbulent features. 

Calculations were performed for ~0 = 0.314 with CT = 10 -2 to simulate a five-fold turbulence 
reduction in the interior of the cluster and C~ = 7 × 10 -2 to simulate an identical reduction at its 
boundaries; results are not illustrated due to space constraints. The most obvious effects of  
turbulence reduction were a 140  decrease in T~ towards the outer cluster and at the outer edge, 
the formation of a peak in both njs at the inner cluster boundary, a reduction in njs at the outer 
cluster boundary, a more uniform profile of  n (including a reduction in the gradients at the outer 
cluster boundary), and increased drop centrifugation. 

The TG~ reduction is caused by the decreased heat transfer from the surroundings to the cluster 
through the reduction of C~. This in turn lowers drop temperature and increases Rj/R ° at the outer 
cluster edge which together with a larger Udrj increases drop centrifugation. This interpretation is 
corroborated by the larger angle of  ud with the tangent at a fixed radial location. 

The formation of a peak in nj is associated with the consecutive coordinate annuli becoming 
thinner for smaller CT. Plots of  radial locations versus time show that in the baseline calculation 
the distance between consecutive radial locations increases with time or remains constant 
everywhere; now this still occurs except at the inner cluster edge where this distance becomes 
smaller with time. This indicates that small scale turbulence disperses drops at the microscale. 

6. SUMMARY AND CONCLUSIONS 

The statistical model presented here describes the dynamics and evaporation of  a polydisperse 
cluster of  liquid drops in a gaseous, cylindrical, axisymmetric, infinite inviscid vortex. This model 
includes two-way coupling between gas and drops, both dynamically and thermodynamica,y,  and 
accounts for multiparticle interactions in terms of motion, heating and evaporation. Thus, this 
model can describe both dense and dilute drop clusters. 'Denseness' is defined in terms of the ratio 
of  the average distance between the centers of adjacent drops to the average drop diameter. 

The initial drop size distribution is partitioned into initial-size classes which develop their own, 
continuous, drop size distribution in a coordinate system moving with the initial-size class. 

The major results of  this study, obtained by varying critical parameters in numerical calculations, 
are: 

(1) The drops at the cluster periphery act as a screen for heat transfer from the cluster 
surroundings, thus causing nonuniformities within the cluster. 
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(2) Size-differentiated centrifuging, which occurs for drops in cold flows, does not necessarily 
occur in vortices where the initial gas temperature is larger than that of the drops. 

(3) Polydispersity increases the maximum of the evaporated compound mass fraction within the 
cluster and penetration of the evaporated compound into the surroundings. It is recommended for 
spray combustion to have a proportionally larger fraction of small drops to enhance evaporation; 
the required minority of larger drops provide centrifugation-induced penetration of the vapor into 
the ambient. 

The model has been qualitatively validated with spray observations. Uncertainties due to the 
modeling of heat transfer between cluster and surrounding gas through a Nusselt number, and to 
the nature of the modeling of small scale turbulence coupling to drop motion (which has been 
incorporated descriptively, but not derived from first principles) have been addressed through 
parametric variations of the only two free parameters of the model. Future investigations will 
provide a more detailed consideration of turbulence and also of the outer boundary and adjacent 
surrounding regions of the cluster. 

Acknowledgements--This research was conducted at the Jet Propulsion Laboratory and sponsored 
by the U.S. Air Force Wright Laboratory, Aero Propulsion and Power Directorate, with Dr T. 
Jackson serving as contract monitor, under an agreement with the National Aeronautics and Space 
Administration. 

REFERENCES 

Abramzon, B. and Sirignano, W. A. (1989) Droplet vaporization model for spray combustion. Int, 
J. Heat Mass Transfer 32, 1605-1618. 

Aftel, R., Gupta, A. K., Cook, C. and Presser, C. (1996) Gas property effects on droplet 
atomization and combustion in an 'air-assist' atomizer. Proceedings of  the 26th Symp. (Int.) on 
Combustion, Naples, Italy. 

Akamatsu, F., Mizutani, Y., Kasuki, M., Tsushima, S. and Cho Y. D. (1996) Measurement of local 
group combustion number of droplet clusters in a premixed spray system. Proceedings of  the 
26th Symp. (Int.) on Combustion, Naples, Italy. 

Allen, M. G. and Hanson, R. K. (1986) Digital imaging of species concentration fields in spray 
flames. 21st Symp. (Int.) on Combustion, pp. 1755-1762. 

Allen, M. G. and Hanson, R. K. (1986) Planar laser-induced-fluorescence monitoring of OH in 
a spray flame. Optica Engineering 25, 1309-1311. 

Bellan, J. and Cuffel, R. (1983) A theory of non dilute spray evaporation based upon multiple drop 
interactions. Combust. and Flame 51, 55-67. 

Bellan, J. and Harstad, K. (1987) The details of the convective evaporation of dense and dilute 
clusters of drops. Int. J. Heat Mass Transfer 30, 1003-1093. 

Bellan, J. and Harstad, K. (1988) Turbulence effects during the evaporation of drops in clusters. 
Int. J. Heat Mass Transfer 31, 1655-1668. 

Bellan, J. and Harstad, K. (1990) The dynamics of dense and dilute clusters of drops evaporating 
in large, coherent vortices. 23rd Syrup. (Int.) on Combustion, pp. 1375-1381. 

Chung, J. N. and Troutt, T. R. (1988) Simulation of particle dispersion in an axisymmetric jet. 
J. Fluid Mech. 186, 199-222. 

Cliffe, K. A. and Lever, D. A. (1985) Isothermal flow past a blowing sphere. Int. J. Numer. Meth. 
Fluids 5, 709-725. 

Crowe, C. T., Chung, J. N. and Troutt, J. R.(1988) Particle mixing in free shear flows. Prog. Energy 
Combust. Sci. 14, 171-194. 

Crowe, C. T., Chung, J. N. and Troutt, J. R. (1993) Particle dispersion by organized turbulent 
structures. In Particulate Two Phase Flow, ed. M. Roco, Ch. 18. Butterworth, London. 

Crowe, C. T., Troutt, J. R. and Chung, J. N. (1996) Numerical models for two-phase turbulent 
flows. Annu. Rev. Fluid Mech. 28, 11-43. 

Engelbert, C., Hardalupas, Y. and Whitelaw, J. H. (1995) Breakup phenomena in coaxial airblast 
atomizers. Proc. R. Soc. Lond. 451, 189-229. 



BEHAVIOR OF A POLYDISPERSE CLUSTER 923 

Gupta, A. K., Presser, C., Hodges, J. T. and Avedesian, C. T. (1996) Role of combustion on droplet 
transport in pressure-atomized spray flames. Journal of Propusion and Power 12, 543-553. 

Hardalupas, Y., Liu, C. H. and Whitelaw, J. H. (1994) Experiments with disk stabilized 
kerosene-fuelled flames. Comb. Sci. and Tech. 97, 157-191. 

Harstad, K. and Bellan, J. (1991) A model of the evaporation of binary-fuel clusters of drops. 
Atomization and Sprays 1, 367-388. 

Hidy, G. M. and Brock, J. R. (1970) The Dynamics of Aerocoloidal Systems, International Reviews 
in Aerosol Physics and Chemistry, Vol. 1. Pergamon Press, Oxford. 

Lazaro, B. J. and Lasheras, J. C. (1989) Particle dispersion in a turbulent, plane, free shear layer. 
Phys. Fluids A 1, 1035-1044. 

Lazaro, B. J. and Lasheras, J. C. (1992a) Particle dispersion in the developing free shear layer. Part 
1. Unforced flow. J. Fluid Mech. 235, 143-178. 

Lazaro, B. J. and Lasheras, J. C. (1992b) Particle dispersion in the developing free shear layer. Part 
2. Forced flow. J. Fluid Mech. 235, 197-221. 

Longmire, E. K. and Eaton, J. K. (1992) Structure of a particle-laden round jet. J. Fluid Mech. 
236, 217-257. 

Maxey, M. R. and Riley, J. J. (1983) Equation of motion for a small rigid sphere in a nonuniform 
flow. Phys. Fluids 26, 883-889. 

McDonell, V. G., Adachi, M. and Samuelsen, G. S. (1992) Structure of reacting and non-reacting 
swirling air-assisted sprays. Comb. Sci. and Tech. 82, 225-248. 

McDonell, V. G., Adachi, M. and Samuelsen, G. S. (1993) Structure of reacting and non-reacting 
non-swirling air-assisted sprays, Part II: Drop behavior. Atomization and Sprays 4, 411-436. 

Mizutani, Y., Nakabe, K., Fuchihata, M., Akamatsu, F., Zaizen, M. and E1-Emam, S. H. (1993) 
Spark-ignited spherical flames propagating in a suspended droplet cloud. Atomization and 
Sprays 3, 125-135. 

Nakabe, K., Mizutani, Y., Akamatsu, F. and Fujoka, H. (1994) Observation of droplet group 
combustion in terms of simultaneous measurement of Mie scattering and spray flames. 
Atomization and Sprays 4, 485-500. 

Nieh, S. and Zhang, J. (1992) Simulation of the strongly swirling aerodynamic field in a vortex 
combustor. J. of Fluid Engineering 114, 367-374. 

Presser, C., Santoro, R. J. and Semerjian, H. G. (1986) Velocity and droplet size measurements 
in a fuel spray. AIAA-86-0297, presented at the 24th Aerospace Sciences Meeting, Reno, NV. 

Presser, C. and Semerjian, H. G. (1988) Dynamics of pressure-jet and air-assisted nozzle sprays: 
aerodynamic effects. AIAA-88-3139, presented at the AIAA/ASME/SAE/ASEE 24th Joint 
Propulsion Conference, Boston, MA. 

Presser, C., Gupta, A. K., Avedesian, C. T. and Semerjian, H. G. (1992) Combustion of methanol 
and methanol/dodecanol spray flames. Journal of Propulsion and Power 8, 553-559. 

Presser, C., Gupta, A. K. and Semerjian, H. G. (1993) Aerodynamic characteristics of swirling 
spray flames: pressure-jet atomizer. Combust. Flame 92, 25--44. 

Presser, C., Gupta, A. K., Avedesian, C. T. and Semerjian, H. G. (1994) Effect of dodecanol 
content on the combustion of methanol spray flames. Atomization and Sprays 4, 207-222. 

Raju, M, S. and Sirignano, W. A. (1987) Spray computations in a centerbody combustor. Proc. 
of the 1987 ASME/ISME Thermal Eng. Joint Conf., ASME, Vol. 1, pp. 61-71. 

Rudoff, R. C., Brena de le Rosa, A., Sankar, S. V. and Bachalo, W. D. (1989) Time analysis of 
polydisperse sprays in complex turbulent environments. AIAA-89-0052, presented at the 27th 
Aerospace Sciences Meeting, Reno, NV. 

Schubauer, G. B. and Tchen, C. M. (1959) Turbulent flow. Turbulent Flows and Heat Transfer, 
High Speed Aerodynamics and Jet Propulsion, pp. 75-195, ed. C. C. Liu. Princeton University 
Press, New York. 

Seth, B., Aggarwal, S. K. and Sirignano, W. A. (1980) Flame propagation through an air-fuel spray 
mixture with transient droplet vaporization. Combustion and Flame 39, 149-168. 

Squires, K. D. and Eaton, J. K. (1991) Preferential concentration of particles by turbulence. Phys. 
Fluids A 3, 1169-1178. 

Tambour, Y. (1985) A Lagrangian sectional approach for simulating droplet size distribution of 
vaporizing fuel sprays a turbulent jet. Combustion and Flame 60, 15-28. 



924  K. HARSTAD and J. BELLAN 

Tambour ,  Y. (1994) Effects of multisize droplet distributions on polydisperse spray jet far-field 
diffusion flames. Atomization and Sprays 4, 565-582. 

Williams, F. (1965) Combustion Theory. Addison-Wesley, Boston. 
Yang, M. and Sichel, M. (1989) Interaction of droplet clouds with swirling flows. AIAA-89-0159, 

presented at the 27th Aerospace Sciences Meeting, Reno, NV. 

A P P E N D I X  A 

Singularity Analysis o f  Solutions o f  the Drops Conservation Equations 

For  simplicity, the case of  a single drop size class without turbulent diffusion or ~b is examined 
here. The goal is to determine whether the system of equations possesses a nonsingular (regular) 
solution for any initial conditions, and if not to identify a set of initial conditions for which the 
solution is regular, at least for short times. Following the equations given in section 2.1, the drops 
equations are 

dr/dt  = Udr [A1] 

dud~/dt = Udo/r -- Vs(Udr- UGr) [A2] 

dFo/dt = - vs(rd - -  FG), [A3] 

where F0 - rUdo, F G  ~ rUoo and 

On/~t + [t?(rudrn)/Or]/r = 0. [A4] 

The Lagrangian radial coordinates associated with the drop are r = r(t, r°), where r ° is the position 
at t = 0, and the initial condition for the radial velocity is Udr(0, r°). 

If  a solution of this system of equations exists at t > 0, then that means that there exists a 
one-to-one transformation between r and r ° and the mapping r ° ~ r is nonsingular. The Jacobian 
of this mapping is 

J =- Or/~r ° = J(t ,  r °) [A5] 

with J(0, r °) = 1. 
For specified U~o(t, r) = u~o(t, r°), [A3] can be solved to yield 

Fd = F° e x p ( - ; ' v ~ d t ' )  + f ' v W c e x p ( -  f l v ~ d t " ) d t ' .  [A6] 

Since for low Reynolds numbers v~ = D~/R 2, where D~ = 9#G/(2pL) ~ 10 ~4cmz/s and 
R = O(10 -~) cm, then v~>> 1. Equation [A6] shows that if ~v~dt'<< 1, then Fd ~--F~ = r°u°o(r°) and 
if ~v~ dt'>> 1, then Fd ~ F~, uoo ~- uGo. 

The momentum equations can be expressed in terms of J for a drop annulus, Ar °, initially located 
at r °, at t > 0 

Ar = JAr ° [A7] 

A(dr/dt)  = Auo, = (Ar°)dY/dt [A8I 

A(duo,/dt) = (Ar°)(d2J/dt 2) [A9] 

Audo = (Ar°)(Oudo/Or)J [A10] 

AUGr = (Ar°)(OUGr/C3r)J, [AI 1] 

where A represents the difference between the values of  the variables at the two extreme positions 
defining an annulus. This means that from [A2] 

A(dudr/dt) = (2udo/r)Audo -- (u~o/r)2(Ar) -- v~(Audr - AuGr). [AI 2] 
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The above equation can be interpreted as a differential equation for J 

d2J /d t  2 + vs d J / d t  + (o3z _ 2o30Udo/Or - v~ OUGr/C~r)J = 0, [AI3] 

where o3 = dO/d t  = udo/r, 0 is the azimuthal angle change, and for short times co = r°u°o/r z. 
Equation [A4] gives 

ddt Jaf nr  dr  = 0 [A14] 

or n r J  = n°r °. Also, 

n r A r  = n°r°Ar ° [A 15] 

~0 r° r = J ( t ,  r°)dr °. [A16] 

Through the gas energy equation uGr depends upon n and since n depends upon J, uGr depends 
upon J. The coefficient of  J in [AI 3] depends upon J, making it very difficult to obtain a solution. 
However, since J has an oscillatory form with a damping component, J becoming null during the 
drops lifetime depends upon the relative magnitude of  the damping component with respect to the 
frequency of the oscillation. A sufficient condition for J to be non null is that [A 13] be quasi-steady; 
thus J is a strictly positive constant and 

o32 _ 2o3 OU~o/Or - v~ t3U~r/~r = 0. [AI7] 

If  u °, = 0, then ( d J / d t )  ° = O. ( d Z J / d ? )  ° = 0 if (dudr/dt)  ° = A °, where A ° is a constant. Using the 
momentum equation one obtains 

(U°o)2/r ° = A ° - V°sU°r. [AI8] 

In order to satisfy the above relationship for all r, A ° ~> v°max(u°r) is chosen. 


